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Quantum Context

One-loop quantum corrections to General relativity in
4-dimensional spacetime produce ultraviolet divergences of
curvature-squared structure.
G. ’t Hooft and M. Veltman, Ann. Inst. Henri Poincaré 20, 69 (1974)

Inclusion of
∫
d4x
√−g(αCµνρσC

µνρσ + ρR2) terms ab initio in the
gravitational action leads to a renormalizable D = 4 theory, but at
the price of a loss of unitarity owing to the modes arising from the
αCµνρσC

µνρσ term, where Cµνρσ is the Weyl tensor.
K.S.S., Phys. Rev. D16, 953 (1977).

[In D = 4 spacetime dimensions, this (Weyl)2 term is equivalent,
up to a topological total derivative via the Gauss-Bonnet theorem,
to the combination α(RµνR

µν − 1
3R

2)].
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Despite the apparent nonphysical behavior, quadratic-curvature
gravities continue to be explored in a number of contexts:

• The asymptotic safety scenario considers the possibility that
there may be a non-Gaussian renormalization-group fixed
point and associated flow trajectories on which the ghost
states arising from the (Weyl)2 term could be absent.
S. Weinberg 1976, M. Reuter 1996, M. Niedermaier 2009

• Cosmology: Starobinsky’s original model for inflation was
based on a

∫
d4x
√−g(−R + ρR2) model.

A.A. Starobinsky 1980; Mukhanov & Chibisov 1981

Strikingly, this early model turns out to give the best current
fit to CMB fluctuation data from the Planck satellite.
J. Martin, C. Ringeval and V. Vennin, arXiv:1303.3787
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Classical gravity with higher derivatives
We shall not try here to settle philosophical debates about various
attitudes that can be taken towards the implementation of
quantum corrections (Wilsonian, or other), but shall simply adopt
a point of view taking the higher-derivative terms and their
consequences for gravitational field-theory solutions seriously.

Accordingly, we shall consider the gravitational action
I = −

∫
d4x
√−g(αRµνR

µν − βR2 + γκ−2R), which can also be
rewritten I = −

∫
d4x
√−g(αCµνρσC

µνρσ + (α3 − β)R2 + γκ−2R),
so in terms of the earlier parametrization one has ρ = α

3 − β.

The field equations following from this higher-derivative action are

Hµν = (α− 2β)∇ν∇µR − α∇η∇ηRµν − (
α

2
− 2β)gµν∇η∇ηR

+2αRηλRµηνλ − 2βRRµν −
1

2
gµν(αRηλRηλ − βR2)

+γκ−2Rµν −
1

2
γκ−2gµνR = Tµν
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Separation of modes in the linearized theory
Solving the full nonlinear field equations is clearly a challenge. One
can make initial progress by restricting the metric to infinitesimal
fluctuations about flat space, defining hµν = κ−1(gµν − ηµν) and
restricting attention to field equations linearized in hµν , or equivalently
by restricting attention to quadratic terms in hµν in the action.

The action then becomes

ILin =

∫
d4x{−1

4
hµν(ακ2�− γ)�P(2)

µνρσh
ρσ

+
1

2
hµν [2(3β − α)κ2�− γ]�P(0;s)

µνρσh
ρσ} ;

P(2)
µνρσ =

1

2
(θµρθνσ + θµσθνρ)− P(0;s)

µνρσ

P(0;s)
µνρσ =

1

3
θµνθρσ θµν = ηµν − ωµν ωµν = ∂µ∂ν/� ,

where the indices are lowered and raised with the background metric
ηµν .
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From this linearized action one deduces the dynamical content of
the linearized theory: positive-energy massless spin-two,

negative-energy massive spin-two with mass m2 = γ
1
2 (ακ2)−

1
2 and

positive-energy massive spin-zero with mass

m0 = γ
1
2 [2(3β − α)κ2)]−

1
2 . K.S.S. 1978

∼∼∼

A simple model of what has happened can be made with a single
scalar field and a higher-derivative action coupled to a source J:

Ihd =

∫
d4x(−1

2∂µφ∂
µφ+ 1

2α∂µφ�∂
µφ+ Jφ)

Going over to momentum space kµ, one can solve for φ and then
separate the propagator into partial fractions:

φ =
J/α

k2(k2 + 1/α)
=

J

k2
− J

k2 + 1/α

similar to the structure found in quadratic gravity, but without the
spin complications.
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Static and spherically symmetric solutions
Now we come to the question of what happens to spherically
symmetric gravitational solutions in the higher-curvature theory.
One may choose to work in traditional Schwarzschild coordinates,
for which the metric is given by

ds2 = −B(r)dt2 + A(r)dr2 + r2(dθ2 + sin2 θdϕ2)

In the linearized theory, one then finds the general solution to the
source-free field equations HL

µν = 0, where
C ,C 2,0,C 2,+,C 2,−,C 0,+,C 0,− are integration constants:

A(r) =

1− C 20

r
− C 2+ em2r

2r
− C 2− e

−m2r

2r
+ C 0+ em0r

r
+ C 0− e

−m0r

r
+1

2C
2+m2e

m2r − 1
2C

2−m2e
−m2r − C 0+m0e

m0r + C 0−m0e
−m0r

B(r) =

C +
C 20

r
+ C 2+ em2r

r
+ C 2− e

−m2r

r
+ C 0+ emr

r
+ C 0− e

−m0r

r
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• As one might expect from the dynamics of the linearized
theory, the general static, spherically symmetric solution is a
combination of a massless Newtonian 1/r potential plus rising
and falling Yukawa potentials arising in both the spin-two and
spin-zero sectors.

• When coupling to non-gravitational matter fields is made via
standard hµνTµν minimal coupling, one gets values for the
integration constants from the specific form of the source
stress tensor. Requiring asymptotic flatness and coupling to a
point-source positive-energy matter delta function
Tµν = δ0µδ

0
νMδ3(~x), for example, one finds

A(r) = 1 + κ2M
8πγr −

κ2M(1+m2r)
12πγ

e−m2r

r − κ2M(1+m0r)
48πγ

e−m0r

r

B(r) = 1− κ2M
8πγr + κ2M

6πγ
e−m2r

r − κ2M
24πγ

e−m0r

r

with specific combinations of the Newtonian 1/r and falling
Yukawa potential corrections arising from the spin-two and
spin-zero sectors.
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What about the Schwarzschild solution?
Returning to the full nonlinear field equations in the source-free case
Hµν = 0, one notes directly that any solution to the source-free
Einstein equation Rµν = 0 will also be a solution to the
higher-curvature theory’s source-free equations. But do we really
want such solutions now?

In the above toy scalar higher-derivative model, the source-free field
equation is (�−m2)�φ = 0. While it is true that any genuine
solution to �φ = 0 satisfies the source-free higher-derivative
equations, things go wrong when one considers the standard q/r
solution to the sourced static problem ∇2φ = qδ3(~x).

In order for this to be a solution to the higher-derivative theory, the
source on the right-hand side of the field equation would need to be
of the form q(∇2 −m2)δ3(~x). This is a highly singular distribution,
and is not even positive when integrated with a generic profile
function. In other words, the attempt to claim solutions to the
second-order �φ = 0 theory as solutions for the higher-derivative
theory implies couplings to other “matter” fields without energy
positivity.
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From the above discussion, we conclude that, although the
Schwarzschild solution is an apparent solution to the source-free
higher-derivative equations Hµν = 0, it will not be a good solution
arising from normal minimal coupling of gravity to matter fields.
The sought-for solution should, in the weak-field linearized limit,
display Yukawa corrections to the Newtonian 1/r potential at
spatial infinity.

Now consider the full nonlinear field equations for the spherically
symmetric case, once again source-free. They are somewhat
frightful. Initially, one gets one third-order equation and one
fourth-order equation. However, the system can then be
rearranged into a system with two third-order equations for the two
metric variables A(r) and B(r).
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The first equation contains the third-order derivative B(3) = B ′′′:
3.2.1 Reduced equations displayed in full

Equation (22) is:

0 =

p
AB

16r2A5B4

✓
16(A � 1)A2B4(5↵ + (↵� 2�)A � 14�) � 32r(↵� 4�)A2B3B0

+4r2B2
⇣
7(3↵� 8�)B2A02 + 2AB (2(8� � 3↵)BA00 + (16� � 5↵)A0B0)

+A2
�
8(↵� 4�)BB00 + (32� � 11↵)B02�+ 4�A4B2 � 4�A3B2

⌘

�4r3B
⇣
4ABB00 ((↵� 4�)BA0 + (↵� 6�)AB0)

+B0 ��7(↵� 4�)B2A02 + 4AB ((↵� 4�)BA00 + �A0B0) � (↵� 8�)A2B02 + 4�A3B2
� ⌘

+r4(↵� 2�)
⇣
6ABB02 (A0B0 � 2AB00)

+B2
�
�8AA0B0B00 + B02 �7A02 � 4AA00�� 4A2B002�+ 7A2B04

⌘

+B(3)
�
8r4(↵� 2�)A2B2B0 + 16r3(↵� 4�)A2B3

�◆
(24)
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The second equation contains the third-order derivative A(3) = A′′′:
And equation (23) is:

0 =

p
AB

2r2A5B4 (2(↵� 4�)B + r(↵� 2�)B0)2

 

16(↵� 3�)(↵� 4�)(A � 1)A3(↵ + 2� + (↵� 2�)A)B5

+16(↵� 3�)A2B4
⇣
2(↵� 4�)(�2↵ + 2� + (↵� 2�)A)BA0

+(↵� 2�)(A � 1)A(↵ + 2� + (↵� 2�)A)B0
⌘
r

+4AB3
⇣
� 4�(↵� 4�)�B2A4 � 4

�
��(↵� 4�)�B2 + (↵� 2�)2(↵� 3�)B02�A3

+(↵� 3�)B0 �4BA0(↵� 2�)2 +
�
3↵2 � 4�↵� 16�2

�
B0�A2

�2(↵� 3�)B
��

3↵2 � 8�↵ + 8�2
�
A0B0 � 2↵(↵� 4�)BA00�A

�(↵� 4�)(↵� 3�)(5↵ + 8�)B2A02
⌘
r2

+4(↵� 4�)B2
⇣

+ 2(↵� 2�)�B2B0A5 + 2(↵� 2�)�B2B0A4

+
�
�4��A0B3 + 2(↵ + 4�)(↵� 3�)B0B00B � (↵� 3�)(3↵ + 4�)B03�A3

+2(↵� 3�)B
�
↵BB0A00 + A0 �↵BB00 � 2(↵ + �)B02��A2

�↵(↵� 3�)B2A0 (5A0B0 + 26BA00) A + 28↵(↵� 3�)B3A03
⌘
r3

+(↵� 2�)B
⇣
� 4�B2

�
(↵� 6�)B02 � 2(↵� 4�)BB00�A4

+
�
� (↵� 3�)(5↵ + 4�)B04 + 8↵(↵� 3�)BB00B02 � 4(↵� 2�)�B3A0B0

�4(↵� 4�)(↵� 3�)B2B002�A3

+2(↵� 3�)BB0 �4↵BB0A00 + A0 �(4� � 5↵)B02 + 2(3↵� 8�)BB00��A2

�(↵� 3�)B2A0B0 (3(7↵� 4�)A0B0 + 52↵BA00) A + 56↵(↵� 3�)B3A03B0
⌘
r4

�(↵� 2�)2AB0 �AB02 + B (A0B0 � 2AB00)
� ⇣

+ 2�A2B2 + (↵� 3�)A0B0B

+(↵� 3�)A
�
B02 � 2BB00� ⌘r5

+
�
16r3↵(↵� 3�)(↵� 4�)A2B5 + 8r4↵(↵� 2�)(↵� 3�)A2B0B4

�
A(3)

!
(25)
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An Israel Theorem
Hopes for an analytic solution to the static spherically symmetric
equations are clearly rather slim. In the end, it will be necessary to
explore such solutions by numerical means. However, some definite
conclusions can be reached by analytical methods. A key tool in
this analysis is an extension of Werner Israel’s “no-hair” theorem.
W. Nelson, Phys.Rev. D82 (2010) 104026; arXiv:1010.3986; H. Lü, A. Perkins, C.N. Pope & K.S.S. to appear.

This theorem extends the classic Israel-Lichnerowicz theorem of
GR to the Einstein-plus-quadratic-curvature gravity theories for
static and spherically symmetric solutions. The approach is a
standard one for “no-hair” theorems: find an appropriate tensorial
factor to contract with the Hµν field equations and then integrate
out from a presumed horizon null-surface to asymptotically flat
infinity. Provided that contraction with the right tensorial factor
has been made, integration by parts then yields an integrand
formed from a sum of squares all with the same sign, plus
boundary terms and one more type of term that will have the same
sign as the sum of squares provided two inequalities are respected.
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Some flavor of how this Israel theorem is derived:

• For 3β −α > 0 (i.e. for non-tachyonic m2
0 > 0), take the trace

of the Hµν = 0 field equation:
(
�− γκ−2

2(3β−α)

)
R = 0. Then

multiply by λ
1
2R and integrate with

∫√
h over a spatial slice at

a fixed time, where hab is the spatial metric and λ = −tatbgab
is the norm of the timelike Killing vector ta orthogonal to the
spatial slice. Integrating by parts, one obtains
∫

d3x
√
h[Da(λ

1
2RDaR)− λ 1

2 (DaR)(DaR)−m2
0λ

1
2R2] = 0

where Da is a 3D covariant derivative on the spatial slice.

From this, provided the boundary term arising from the total
derivative gives a zero contribution, and for m2

0 > 0, one
obtains R = 0. The boundary at spatial infinity gives a
vanishing contribution provided R → 0 as r →∞.

• The inner boundary at a horizon null-surface will give a zero
contribution since λ = 0 there.
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In the general non-tachyonic case for α > 0 and 3β − α > 0, one
needs to complete the discussion using the non-trace part of the
field equation. The derivation then goes similarly, with a surface
term that vanishes on a null-surface and at asymptotically flat
spatial infinity. One again obtains a requirement for the vanishing
of an integral over the spatial slice of a sum of squares with the
same (negative) sign, plus two final terms that are also of the same
sign provided certain inequalities are obeyed.

From the required vanishing of this integral, one finds that,
provided the following inequalities are satisfied

m2
2 − (3)R ≥ 0

m2
2R̄

a
bR̄

b
a + 2R̄a

bR̄
b
c R̄

c
a ≥ 0

one must have R̄ab = 0 and (3)R = 0, where R̄ab is the pull-back of
the D = 4 Ricci tensor to the D = 3 spatial slice. Together, these
imply Rµν = 0, requiring the solution to be Schwarzschild.
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Implications of the Israel Theorem

The Israel theorem is a quite strong result, clearly incompatible
with the corrections to the Schwarzschild solution found in the
linearized analysis. Yet, for any spherically symmetric solution that
can be continuously parametrically deformed to flat space, the
linearized theory solutions must inevitably become relevant (as
they do for the Schwarzschild solution itself, in the limit of
vanishing Schwarzschild mass M).

• As we have seen , the Schwarzschild solution is not the
solution that couples normally to a positive-energy stress
tensor source. Solutions that couple to matter via minimal
coupling (ηµν → gµν with corresponding covariant derivatives
∇µ) necessarily acquire corrections on top of the usual GR
solution.
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So the conclusion must be that one of the assumptions of the
Israel theorem has to be violated in order to obtain an
asymptotically-flat spherically-symmetric solution that can couple
normally to non-gravitational matter.

I For asymptotically-flat solutions, the only other assumption is
that there is a horizon.

I Thus one concludes that solutions arising from minimal
coupling to non-gravitational fields have a strikingly different
structure to those of ordinary Einstein theory: there is no
horizon – black holes are not so black.

I The question then remains what the properly coupling
solutions are actually like: what is the near-origin structure of
spherically-symmetric and asymptotically flat solutions to the
higher-derivative theory?
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Indicial Analysis
A type of asymptotic analysis of the field equations complementary
to the linearized analysis at r →∞ spatial infinity is study of the
indicial equations for behavior as r → 0. K.S.S. 1978 Let

A(r) = asr
s + as+1r

s+1 + as+2r
s+2 + · · ·

B(r) = btr
t + bt+1r

t+1 + bt+2r
t+2 + · · ·

and analyze the conditions necessary for the lowest-order terms in
r of the field equations Hµν = 0 to be satisfied. This gives the
following results, for the general α, β theory:

(s, t) = (1,−1) with 3 free parameters

(s, t) = (0, 0) with 4 free parameters

(s, t) = (2, 2) with 6 free parameters

However, for the (1,−1) and (0, 0) cases, the Israel theorem can
once again be used to rule out these cases as candidates for
solutions that match to the Yukawa-corrected asymptotically-flat
solutions at infinity. This leaves the (2, 2) behavior at the origin as
the unique remaining candidate for such solutions.
Lü,Perkins,Pope&K.S.S., work in progress
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Numerical Analysis
In the absence of a suitably general analytic solution to the
higher-derivative equations Hµν = 0, one must have recourse to
numerical studies. This has been investigated by Bob Holdom.
B. Holdom, Phys.Rev. D66 (2002) 084010; hep-th/0206219

Here is a graph of his results, showing, indeed, r2 behavior for both
A(r) and B(r) as r → 0, but connecting on to a Yukawa-corrected
approximation to the Schwarzschild solution as r →∞:

A!r "!a2r2"a3r3"a4r4" #
n$5

anrn,

B!r "!b2r2"
a3
a2
b2r3"

6a2a4"a3
2"2a2

3

8a2
2 b2r4" #

n$5
bnrn.

!8"

We shall be concerned with a2 ,b2#0, where b2 is sensitive
to a rescaling of t. The existence of these solutions up to r3
was shown in %2&. We have found that these are 5 parameter
solutions where the parameters (a2 ,a3 ,a4 ,a5 ,b5) determine
(an ,bn) for n$6, for a given action. The leading behavior
of the curvature invariants %R ,R'(R'(,R'()*R'()*]
is %(22a3a2

3"10a2a3a4$a3
3$60b5a2

3"36a5a2
2)/(4a2

4r),
12/(a2

2r8),24/(a2
2r8)], to be compared with %0, 0, +1/r6] for

the Schd solution. We note here that any nonsingular mass
distribution only affects (an ,bn) for n$10.
It is an interesting coincidence that there are five param-

eters here, just as in the linearized gravity solutions. This
lends support to the idea that full solutions exist which join
together the strong gravity small r solutions with the weak
gravity large r solutions. A numerical verification is made
somewhat difficult by the existence of exponentially growing
solutions at large r, and by the extremely singular behavior
of the equations at small r away from the exact solutions. In
particular, a numerical analysis based on the initial value
problem at r!0 is not feasible. Instead the following strat-
egy was adopted.
At some finite r0 in the weak gravity region initial condi-

tions are chosen so as to deviate only very slightly from the
Schd solution, and the equations are numerically integrated
for r both larger and smaller than r0. The Yukawa potential
modes are induced and they grow for decreasing r. This can
cause the solution to deviate significantly from the Schd so-
lution around the would-be horizon region, and rather than
changing sign, both A(r) and B(r) can stay finite and posi-
tive throughout this region and down to r!0. The initial
conditions at r0 are then finely tuned so that A(r) and B(r)
near r!0 take the form of the known solution in Eq. !8" to
O(r4).
Additional fine tuning is needed to remove the unwanted

modes that grow exponentially with r. But it is easier just to
repeat the whole process for a larger r0 where the required
deviation from the Schd solution is smaller; then the ampli-
tude of the unwanted modes is smaller and a sensible nu-
merical solution extends out to larger r. It appears that the
extent to which one can push this is a purely numerical limi-
tation, and that these numerical results are sufficient to dem-
onstrate the existence of exact solutions of this type.
We display one of these numerical vacuum solutions in

Fig. 1, where we plot the functions $ln„A(r)… and ln„B(r)….
These functions coincide !after a suitable rescaling of t) with
each other and with the Schd solution in the weak gravity
region, exterior to the would-be horizon. We have chosen a
!G/2 and b!$G in Eq. !7" to simplify the equations some-
what !corresponding, in the linearized theory, to equal
masses for the two massive modes", but the basic properties

of the solutions are independent of this choice. The mass M
as deduced by the large r behavior in this example is
10G$1/2. Larger M has also been considered and there does
not seem to be any limitation, other than numerical, to re-
cover arbitrarily large mass solutions.
The new solutions have no horizon and a singularity at the

origin. Their interior form, and the point where deviation
from the Schd solution occurs, is not uniquely determined by
M. This is as expected given the additional parameters gov-
erning the strength of the Yukawa potentials in the exterior
solution, and the five parameters in Eq. !8". We also find that
a2+G$3M $4, which is consistent with the curvature in-
variant R'()*R'()* being of Planck size close to the
would-be horizon, even for a large mass object. Of course
this is how the usual arguments for the existence of a horizon
are avoided, since the uniqueness of the Schd solution relies
on small curvatures and the applicability of general relativity
down to radii well within the horizon.
This solution is intriguing, but it is occurring in a theory

arbitrarily truncated in derivatives, and the solution involves
a region of high curvature where higher derivative terms
would be important. On the other hand, the Schd solution
suffers from exactly the same problems. As in that case one
may want to presume that the higher derivative terms being
ignored would serve to smooth out the singularity at the
origin while retaining the main qualitative feature, the fact
that the transition between weak and strong gravity has
moved out to the would-be horizon radius.

IV. NONSINGULAR SOLUTIONS

We shall now turn to the nonsingular solutions of the 2
"4 derivative theory, where additional insights will
emerge.3 A spherically symmetric nonsingular matter distri-
bution will act as a source for these solutions. We choose to

3We keep in mind though that these solutions need not be truly
representative of the nonsingular solutions in theories with even
more derivatives.

FIG. 1. A solution of the 2"4 derivative theory with no horizon
and a singularity at the origin, which matches onto the Schd solu-
tion with M!10 close to its horizon at r!20 !in units with G
!1). A(r) and B(r) exhibit an r2 dependence near r!0.

BOB HOLDOM PHYSICAL REVIEW D 66, 084010 !2002"

084010-4
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Taking this numerical study together with the implications of the
Israel theorem, a coherent picture emerges:

I The link between behavior near the origin, r → 0, to
asymptotically-flat Yukawa-corrected solutions at infinity
happens in the (s, t) = (2, 2) class of solutions to the
higher-derivative theory. Note that the number of free
parameters at the origin for this class matches precisely the
number of parameters in the linearized solution. (Of course,
rising Yukawa terms need to be excluded from the
asymptotically flat solution set, but they are still solutions to
the linearized theory.)

I There is no horizon in this set of minimally-coupled,
Yukawa-corrected solutions. Solutions asymptotically
approach the Schwarzschild solution for large r , but differ
strikingly in what would have been the inner-horizon region.
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I Although there is a curvature singularity at the origin in the
(2, 2) class of solutions (e.g. for this class, one has
RµνρσR

µνρσ = 20a−22 r−8 + · · · ), this is a timelike singularity,
unlike the spacelike singularity of the Schwarzschild solution.

Although one might complain that this non-Schwarzschild behavior
occurs in a theory with a massive spin-two ghost, the limit as
α→ 0 removes this ghost as well as the complications of the
m2-dependent inequalities. The R + R2 theory at α = 0 is
ghost-free, and yet has the same horizonless structure for its
spherically symmetric static solutions as in the general α, β case,
when its spherically-symmetric solution is derived from minimal
coupling to non-gravitational matter.
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