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Quantum Context

One-loop quantum corrections to General relativity in
4-dimensional spacetime produce ultraviolet divergences of
curvature-squared structure.

G. 't Hooft and M. Veltman, Ann. Inst. Henri Poincaré 20, 69 (1974)

Inclusion of [ d*xv/—g(aCpyps C*? + pR?) terms ab initio in the
gravitational action leads to a renormalizable D = 4 theory, but at
the price of a loss of unitarity owing to the modes arising from the
aCuypo CHP7 term, where C,,, )5 is the Weyl tensor.

K.S.S., Phys. Rev. D16, 953 (1977)

[In D = 4 spacetime dimensions, this (Weyl)? term is equivalent,
up to a topological total derivative via the Gauss-Bonnet theorem,
to the combination a (R, R — %RZ)].

N
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Despite the apparent nonphysical behavior, quadratic-curvature
gravities continue to be explored in a number of contexts:

e The asymptotic safety scenario considers the possibility that
there may be a non-Gaussian renormalization-group fixed
point and associated flow trajectories on which the ghost
states arising from the (Weyl)? term could be absent.

S. Weinberg 1976, M. Reuter 1996, M. Niedermaier 2009

e Cosmology: Starobinsky's original model for inflation was
based on a [ d*xy/—g(—R + pR?) model.
A.A. Starobinsky 1980; Mukhanov & Chibisov 1981
Strikingly, this early model turns out to give the best current
fit to CMB fluctuation data from the Planck satellite.

J. Martin, C. Ringeval and V. Vennin, arXiv:1303.3787
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Classical gravity with higher derivatives
We shall not try here to settle philosophical debates about various
attitudes that can be taken towards the implementation of
quantum corrections (Wilsonian, or other), but shall simply adopt
a point of view taking the higher-derivative terms and their
consequences for gravitational field-theory solutions seriously.

Accordingly, we shall consider the gravitational action

| = — [ d*x/—g(aR, R*" — BR? + vk ~2R), which can also be
rewritten | = — [ d*x\/=g(aCupe C"P7 + (§ — B)R? + 75 2R),
so in terms of the earlier parametrization one has p = § — 3.

The field equations following from this higher-derivative action are

o
Huw = (0 =28)VyVuR = aV'VyRu — (5 = 28)gu V"V, R
1
+2aRM Ryn — 2BRR, — Egm,(aR”’\RnA — BR?)

1
-2 -2
+yE Ry — E'm guwhR=Tu

21



Separation of modes in the linearized theory
Solving the full nonlinear field equations is clearly a challenge. One
can make initial progress by restricting the metric to infinitesimal
fluctuations about flat space, defining hy, = £~ *(gu — 1) and
restricting attention to field equations linearized in h,,, or equivalently
by restricting attention to quadratic terms in h,, in the action.

The action then becomes

1,., i
b, = / d4x{—1h” (ar®0 —)OPR) h
1 17 'S g
+5 (238 — )20 —A)OPCS) ko)
1 'S
P;(t?/)pﬂ = E(eupgw + Ououp) — P;(L%pt)‘f
PO = Lo O = Ny — = 9,0,/0
pvpo = 3Vuwlpo pv = Npy — Wpw wuy = 0,0, /0,

where the indices are lowered and raised with the background metric
Ny -
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From this linearized action one deduces the dynamical content of

the linearized theory: positive-energy massless spin-two,
1

and

N—=

negative-energy massive spin-two with mass my = 2 (ax?)~
positive-energy massive spin-zero with mass

1 1
mo = v2[2(38 — Oz)/{2)]_5. K.S.S. 1978

~IAY Y

A simple model of what has happened can be made with a single
scalar field and a higher-derivative action coupled to a source J:

e = / d*x(—10,60"¢ + 100,600 ¢ + Jo)
Going over to momentum space k", one can solve for ¢ and then
separate the propagator into partial fractions:
B J/a _J J
 K2(k2+1/a) k2 K2+1/a

similar to the structure found in quadratic gravity, but without the
spin complications.

¢

6
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Static and spherically symmetric solutions
Now we come to the question of what happens to spherically
symmetric gravitational solutions in the higher-curvature theory.
One may choose to work in traditional Schwarzschild coordinates,
for which the metric is given by

ds?> = —B(r)dt? + A(r)dr? + r?(d6? + sin® d?)

In the linearized theory, one then finds the general solution to the
source-free field equations Hﬁl, =0, where
C,C?0 C?* C%~,Co%*, C%~ are integration constants:

A(r) =
1— Lm _ et em" 2 e ™’ 4 o+ em’ 4o e o’
r 2r 2r r r
+%C2+m26m2r . %C2_m26_m2r _ C0+moemor + CO—mOe—mor
B(r) =

mor —my

C20 r emr
C+—+C—+C— + O — 4
r r r r

—mor
e 0

r



e As one might expect from the dynamics of the linearized
theory, the general static, spherically symmetric solution is a
combination of a massless Newtonian 1/r potential plus rising
and falling Yukawa potentials arising in both the spin-two and
spin-zero sectors.

e When coupling to non-gravitational matter fields is made via
standard h*¥ T, minimal coupling, one gets values for the
integration constants from the specific form of the source
stress tensor. Requiring asymptotic flatness and coupling to a
point-source positive-energy matter delta function
T = 5253/\/]53()?), for example, one finds

/12M(1+m2r) e"mr /42I\/I(l+mor) e Mo’

A(r) = 1+3 87r’yr - 127y r 481y r
mor K,2M e—mor

K2ZM e~
B(r) = 1= g T %0 7 — 5407 7

8ﬂ7r

with specific combinations of the Newtonian 1/r and falling
Yukawa potential corrections arising from the spin-two and
spin-zero sectors.



What about the Schwarzschild solution?

Returning to the full nonlinear field equations in the source-free case
H,,, = 0, one notes directly that any solution to the source-free
Einstein equation R, = 0 will also be a solution to the
higher-curvature theory’s source-free equations. But do we really
want such solutions now?

In the above toy scalar higher-derivative model, the source-free field
equation is (O — m?)0¢ = 0. While it is true that any genuine
solution to (¢ = 0 satisfies the source-free higher-derivative
equations, things go wrong when one considers the standard q/r
solution to the sourced static problem V2¢ = gd3(x).

In order for this to be a solution to the higher-derivative theory, the
source on the right-hand side of the field equation would need to be
of the form q(V?2 — m?)83(X). This is a highly singular distribution,
and is not even positive when integrated with a generic profile
function. In other words, the attempt to claim solutions to the
second-order [J¢p = 0 theory as solutions for the higher-derivative
theory implies couplings to other “matter” fields without energy
positivity.
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From the above discussion, we conclude that, although the
Schwarzschild solution is an apparent solution to the source-free
higher-derivative equations H,,, = 0, it will not be a good solution
arising from normal minimal coupling of gravity to matter fields.
The sought-for solution should, in the weak-field linearized limit,
display Yukawa corrections to the Newtonian 1/r potential at
spatial infinity.

Now consider the full nonlinear field equations for the spherically
symmetric case, once again source-free. They are somewhat
frightful. Initially, one gets one third-order equation and one
fourth-order equation. However, the system can then be
rearranged into a system with two third-order equations for the two
metric variables A(r) and B(r).
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The first equation contains the third-order derivative B3) = B":

0 = wﬂ% (16(A —1)A’B*(5a + (a — 28)A — 148) — 32r(c — 48)A>B* B’
+4r2B? (7(3a — 88)B2A™ + 2AB (2(35 — 3a) BA” + (168 — 5a)A'B')
+A? (8(a — 48)BB” + (328 — 11a)B”) + 4yA*B? — 4A/A3BZ)
—4r3B(4ABB” ((a — 4B)BA' + (a — 68)AB')
+B' (=7(a — 4B8)B*A”? + 4AB (v — 4B8)BA” + BA'B') — (a — 88) A2 B + 4y A3 B?) )
+r4(a - 26) <6ABB’2 (A'B' — 2AB")
+B (~SAA'B'B" + B (TA® — 1AA") — 4A2B"2) 1 TA2B)

+B® (8*(a — 28)A* B’ B’ + 161" (a — 48) A’ B*) )
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The second equation contains the third-order derivative A®) = A"

VAB
2r2A5B4 (2(a — 48)B + r(a — 28)B')°

16(a — 38)(a — 48)(A — 1) A (a + 28 + (a — 28)A) B®

+16(a — 38)A%B* (z(a —4B)(~2a+ 26 + (a — 268)A)BA’
(o —26)(A— 1) A(a +28 + (a — 2ﬁ)A>B')r

+4ABa< —4B(a — AB)yB*A* — 4 (—B(a — 48)vB® + (a — 2B)*(a — 38)B"%) A®
+(a = 3B)B' (4BA'(a — 28)* + (3a® — 48a — 168%) B') A?
—2(a = 38)B ((30” — 88a + 88%) A'B' — 2a(c — 48)BA") A
—(a— 4B)(a — 38)(5a + Sﬁ)B'zA"‘)rQ

(o — 4ﬁ)32( +2(a — 28)7B*B'A° + 2(a — 28)yB>B' At
+ (—48vA'B* + 2(a + 48) (o — 38)B'B"B — (o — 35)(3c + 48) B®) A?
+2(a - 38)B (aBB'A" + A' (aBB" — 2(a + B)B")) A
—a(a — 38)B2A’ (5A'B' + 26BA") A + 28a(a — 3ﬂ)33A'3)73

- 2/3)3( — 4982 (o — 68) B — 2( — 48)BB") A*
+( = (a = 38)(5a + 48)B" + 8a(a — 38)BB" B — 4(a — 28)yB*A'B’
—4(a - 48)(a — 36)B*B"?) A*
+2(a — 38)BB' (4aBB'A” + A’ (48 - 50)B" + 2(3a — 88)BB")) A?
—(a—38)B2A'B’ (3(Tae — 48) A’ B’ + 52aBA") A + 560(a — 35)3’/1’“5’) r

—(a—28)°AB' (AB” + B(A'B' - 2AB")) ( +29A2B% + (o — 38)A'B'B
+(a—38)A (B? —2BB") )7-5

+ (16r%a(a — 38)(a — 48)A?B® + 8r'a(a — 28) (o — 38)A*B'B*) A<3>>
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An lIsrael Theorem

Hopes for an analytic solution to the static spherically symmetric
equations are clearly rather slim. In the end, it will be necessary to
explore such solutions by numerical means. However, some definite
conclusions can be reached by analytical methods. A key tool in
this analysis is an extension of Werner Israel's “no-hair” theorem.

W. Nelson, Phys.Rev. D82 (2010) 104026; arXiv:1010.3986; H. Lii, A. Perkins, C.N. Pope & K.S.S. to appear

This theorem extends the classic Israel-Lichnerowicz theorem of
GR to the Einstein-plus-quadratic-curvature gravity theories for
static and spherically symmetric solutions. The approach is a
standard one for “no-hair” theorems: find an appropriate tensorial
factor to contract with the H,, field equations and then integrate
out from a presumed horizon null-surface to asymptotically flat
infinity. Provided that contraction with the right tensorial factor
has been made, integration by parts then yields an integrand
formed from a sum of squares all with the same sign, plus
boundary terms and one more type of term that will have the same

sign as the sum of squares provided two inequalities are respected:
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Some flavor of how this Israel theorem is derived:

e For 33 —a > 0 (i.e. for non-tachyonic m3 > 0), take the trace
of the H,,, = 0 field equation: (D - 2(%:2)) R =0. Then

multiply by A2R and integrate with fﬁ over a spatial slice at
a fixed time, where h,p, is the spatial metric and A = —tatbgab
is the norm of the timelike Killing vector t? orthogonal to the
spatial slice. Integrating by parts, one obtains

/d3xfh[Da(A%RDaR) — \2(D?R)(D,R) — mA:R?} =0

where D, is a 3D covariant derivative on the spatial slice.

From this, provided the boundary term arising from the total
derivative gives a zero contribution, and for m3 > 0, one
obtains R = 0. The boundary at spatial infinity gives a
vanishing contribution provided R — 0 as r — oo.

e The inner boundary at a horizon null-surface will give a zero
contribution since A = 0 there.
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In the general non-tachyonic case for « > 0 and 35 — a > 0, one
needs to complete the discussion using the non-trace part of the
field equation. The derivation then goes similarly, with a surface
term that vanishes on a null-surface and at asymptotically flat
spatial infinity. One again obtains a requirement for the vanishing
of an integral over the spatial slice of a sum of squares with the
same (negative) sign, plus two final terms that are also of the same
sign provided certain inequalities are obeyed.

From the required vanishing of this integral, one finds that,
provided the following inequalities are satisfied
m3 — R >0
m%RabR)ba + 2’E\>abR>bCR>ca >0
one must have R,, = 0 and ()R =0, where R.p is the pull-back of

the D = 4 Ricci tensor to the D = 3 spatial slice. Together, these
imply R, = 0, requiring the solution to be Schwarzschild.
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Implications of the Israel Theorem

The Israel theorem is a quite strong result, clearly incompatible
with the corrections to the Schwarzschild solution found in the
linearized analysis. Yet, for any spherically symmetric solution that
can be continuously parametrically deformed to flat space, the
linearized theory solutions must inevitably become relevant (as
they do for the Schwarzschild solution itself, in the limit of
vanishing Schwarzschild mass M).

e As we have seen , the Schwarzschild solution is not the
solution that couples normally to a positive-energy stress
tensor source. Solutions that couple to matter via minimal
coupling (1, — g with corresponding covariant derivatives
V,.) necessarily acquire corrections on top of the usual GR
solution.
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So the conclusion must be that one of the assumptions of the
Israel theorem has to be violated in order to obtain an
asymptotically-flat spherically-symmetric solution that can couple
normally to non-gravitational matter.

» For asymptotically-flat solutions, the only other assumption is
that there is a horizon.

» Thus one concludes that solutions arising from minimal
coupling to non-gravitational fields have a strikingly different
structure to those of ordinary Einstein theory: there is no
horizon — black holes are not so black.

» The question then remains what the properly coupling
solutions are actually like: what is the near-origin structure of
spherically-symmetric and asymptotically flat solutions to the
higher-derivative theory?

17/21



Indicial Analysis
A type of asymptotic analysis of the field equations complementary
to the linearized analysis at r — oo spatial infinity is study of the
indicial equations for behavior as r — 0. kss 1075 Let

A(r) = asr®+asy1rtt +agrtt? 4o

B(r) = bert + bepar™ + beyor™ 4
and analyze the conditions necessary for the lowest-order terms in
r of the field equations H,,,, = 0 to be satisfied. This gives the
following results, for the general «, [ theory:

(s,t) = (1,-1) with 3 free parameters

(s,t) = (0,0) with 4 free parameters

(s,t) = (2,2) with 6 free parameters
However, for the (1,—1) and (0, 0) cases, the Israel theorem can
once again be used to rule out these cases as candidates for
solutions that match to the Yukawa-corrected asymptotically-flat

solutions at infinity. This leaves the (2,2) behavior at the origin as
the unique remaining candidate for such solutions. 18/21



Numerical Analysis

In the absence of a suitably general analytic solution to the
higher-derivative equations H,,, = 0, one must have recourse to
numerical studies. This has been investigated by Bob Holdom.

B. Holdom, Phys.Rev. D66 (2002) 084010; hep-th/0206219

Here is a graph of his results, showing, indeed, r? behavior for both
A(r) and B(r) as r — 0, but connecting on to a Yukawa-corrected
approximation to the Schwarzschild solution as r — oo:

154

—In(A(r))

In(B(r))
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Taking this numerical study together with the implications of the
Israel theorem, a coherent picture emerges:

» The link between behavior near the origin, r — 0, to
asymptotically-flat Yukawa-corrected solutions at infinity
happens in the (s, t) = (2,2) class of solutions to the
higher-derivative theory. Note that the number of free
parameters at the origin for this class matches precisely the
number of parameters in the linearized solution. (Of course,
rising Yukawa terms need to be excluded from the
asymptotically flat solution set, but they are still solutions to
the linearized theory.)

» There is no horizon in this set of minimally-coupled,
Yukawa-corrected solutions. Solutions asymptotically
approach the Schwarzschild solution for large r, but differ
strikingly in what would have been the inner-horizon region.
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» Although there is a curvature singularity at the origin in the
(2,2) class of solutions (e.g. for this class, one has
Ry po RIVPT = 2032_2r_8 + ---), this is a timelike singularity,
unlike the spacelike singularity of the Schwarzschild solution.

Although one might complain that this non-Schwarzschild behavior
occurs in a theory with a massive spin-two ghost, the limit as

a — 0 removes this ghost as well as the complications of the
mo-dependent inequalities. The R 4+ R? theory at « =0 is
ghost-free, and yet has the same horizonless structure for its
spherically symmetric static solutions as in the general «, 3 case,
when its spherically-symmetric solution is derived from minimal
coupling to non-gravitational matter.
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